PRODUCTS
Pretreatment
Boiler Water Services
Cooling Water Services
Influent/Effluent Water
Services
 
Odor Control
Combustion Improvement
Boiler Fuel
Products
==Boiler Fuel==

CHEMICAL TREATMENT

Many chemical solutions have been devised to control cold-end deposition and corrosion. These solutions can be divided into two broad classifications: fuel additives and cold-end additives. Fuel additives are compounds that are added directly to the fuel or combustion process. Cold-end additives are fed into the back of the boiler after steam-generating surfaces so that they spe-cifically treat only the lower-temperature areas.

Fuel Additives

Magnesium and magnesium/aluminum based fuel additives are used to reduce sulfur trioxide in the flue gas. These compounds function primarily by altering the effectiveness of the iron and vanadium catalysts. They are fed to liquid fuels, most commonly residual fuel oil. Alkaline fuel oil additives, such as magnesium, also increase the pH of deposits formed on cold-end surfaces, thereby reducing corrosion.

Cold-End Additives

Cold-end corrosion and deposition can be controlled more economically and effectively through the use of cold-end additives. Cold-end additives include sulfuric acid neutralizing agents and corrosion inhibitors.

Magnesium Compounds. Alkaline magnesium compounds, such as magnesium oxide and magnesium carbonate, are fed to reduce the sulfur trioxide content of flue gases. These compounds are fed in high-temperature areas, such as primary superheater sections. The reaction product formed, magnesium sulfate, often increases deposition within air preheaters.

The main benefit of magnesium compound injection is a reduction in air preheater corrosion. Often, the level of fouling is not appreciably altered, because the corrosion product fouling is replaced by magnesium sulfate fouling. Therefore, where magnesium compounds are used, suitable water wash nozzles must be present to permit periodic removal of magnesium sulfate.

Additives that remove sulfur trioxide from flue gas must be fed in stoichiometric quantities with respect to the amount of sulfur trioxide to be removed. Therefore, higher levels of sulfur in the fuel require higher feed rates for protection. Coal-fired boilers require less treatment than oil-fired boilers for a given sulfur level in the fuel.

Corrosion Inhibitors. Corrosion inhibitors can be added to the cold end of the boiler to alleviate problems associated with the condensation of sulfuric acid. These materials do not neutralize the sulfuric acid in the flue gas; they prevent surface corrosion where the sulfuric acid condenses. Fouling of the air preheater is reduced because the quantity of corrosion products is reduced. Although the dosage of inhibitor required to achieve the desired effect increases with increasing acid content in the flue gas, the relationship is not linear.

The compositions of inhibitor-type cold-end additives are usually proprietary. Products are available in powder and liquid form. Liquid solutions are injected upstream of the problem area with atomizing spray nozzles.

Justification for cold-end additives is generally based on the benefits obtained by higher unit heat rates and lower maintenance costs for the equipment in the cold-end section. The feed of cold-end additives enables the unit to operate with a lower rate of steam flow to the steam coil air preheaters, resulting in an increase in unit heat rate. If average cold-end temperature is controlled with bypasses, the bypassed air flow can be reduced so that an improvement in boiler efficiency is obtained. A smaller improvement in heat rate is gained through reduction of fan horsepower, which reduces the average pressure drop across the air preheater.

Acid Smut Control. Cold-end additives can be used to reduce acid smut problems. In some in-stances, it is believed that smut is created when fly ash particles agglomerate to form larger particles. These particles adsorb sulfuric acid mist and become highly acidic. Fly ash deposits often accumulate in low-temperature areas of breeching. During soot blowing or load changes, some of the deposited fly ash can be entrained in the flue gas stream and carried out the stack. The large particles then settle in the vicinity of the stack. Magnesium-based fuel additives have been beneficial in reducing acid smut problems by increasing the pH of the deposits.

Evaluation and Monitoring Techniques

Corrosion Rate Measurement. Various devices are available to assess the impact of additive application on corrosion rates. Table 22-1 shows a selection of monitoring methods. In some cases, problems in the breeching, induced draft fans, and stack can be measured by corrosion coupons placed within the flue gas stream.

 
1    2    3    4    5    6    7    8    9    10
Privacy Statement  |  Copyright  |   Contact Us  |   Trading Terms & Conditions
Copyright © Hudson Water Technologies Company 2009